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Theoretical Division
Los Alamos National Laboratory
Los Alames, NM 87545

ABSTRACT

We present multiplicity distributions in the parton branching
model.l) We obtain a new non-scaling low for the probability distribu-

2)

tion. In the high energy limit, when we neglect quark evolution,

scaling is approvached from below in agreement with experimental data.

1. INTRODUCTION

In 1972 Koba, Nielsen and Olesen3) predicted, that at sufficient-
ly high energies

(of
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n
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where o is the partial cross section for producing a state of multi-
plicity n and §(z) is energy independent function. For pp collisions
this scaling seemed to hold approximately for energies up to ISR,A)
but at CERN colliders) energies scaling violations have been observed.
On Fig. 1 we see that KNO scaling violations sre manifested in rising
and broadeuing of the multiplicity distributions suggesting that if
there is any scaling, it is approached from below as energy increases.
The parton braaching model that we derive in the next section system-
atically deviate from KNO scaling by approaching the scaling from

below in the bhigh 2z tail in agreement with the experimental data.
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Fig. 1. The multiplicity distributions ﬁon/ZOn plotted as a function
of 2 = n/n, for energy ranges from FNAL (5~10 GeV) through ISR (s~63
GeV) to CERN SppS collider (s~540 GeV), Ref. 3. o

2. MODEL BASED ON QCD BRANCHING PROCESSESI)

a) The coupled quark-gluon equations. We assume that hadrons

collide producing o, initial gluons and LR initial quarks with the
corresponding probability distribution Pmn(no,mo,t). These gluons and
quarks branch loosing their energy. When they reach the hadronizatinn
energy, branching stops ond quarks and glucns hadronize. Scali.g
violations can come from any of these stages. In this paper we assume
that number of partons is proportional to the number of hadrons and we
concentrate on the branching stage. We consider the following branch-
ing processes: quark bremsstralung, 3-gluon brlnchigg, qa pair prod-
uction and :Sgluon branching with probabilities A, A, B, and C

respectively.



The probability distribution for getting m quarks and n gluons

satisfies the following evolution equation

9P

mn _ - - _~ - -
5t - Aan Bann Ampmn Cnpmn + A(n I)Pm n-1

+ AP+ B(ot1)P o+ C(a-2)P ., . (2)

n- n+

where t is the evolution parameter related to the parton energy,
t~lnln Q2. This equation can be solved exactly only in some limiting
cases. If we assume that Pmn is a smooth function of m and n and
ann(umn) varies slowly between n &nd n+l (m and m+1) Eq. (2) becomes

a differential equation for the probability distribution P(m,n,t):

apé? B) = . {A+2C-B]P(m,n) + [-(A*+2C-B)n-Au] §2§%922 . (3)

- 2Bn §2§2422 PO

where we have neglected terms higher than second order in the Taylor
expansions. Eq. (3) cen be solved with the assumption of u, initial
gluons and m, quarks. In that case we ohtain a new non-scaling law for

the probability distribution P(m,n}:

2B ' A
2B-, ,- . A - L n o+ 3o
(m - =) (o + =m) P(m,n) =y A, A (4)
A A '
-  2B- - A -
m - =0 o+ —m
A A
where
_ + % = T2
a,=A-B+2, A =5 1z 1+8AB/ao ) . (5)

b) The decoupled gluon equation. At high energies gluons

dominate (5/5~28/A, B<<A). Therefore, we can neglect quark evolution
(n = o, = const). The evolution equation for the probability distribu-
tion P(n,t) is



== = -AnP_-BnP_-AmP_-CnP_+A(n-1)P
on n n n n n-1
+B(n+l)Pn+l+AmPn_]+C(n-2)Pn_2 , (6)
This equation can not be solved exactly. We can make the same

approximation as we did for the coupled quark-gluon equation and obtain
the differential equation for the probability distribution P(n,t). We
find the following solution

? -A
P(n,t) = [ dAaw(A)e td.l(a,c,y) (7
o

where y(a,c,y) is the confluent hypergeometrical functions regular for

large y, w(A) is an unspecified weight function,

(al-xm) a
—~n, a, = A+B+4C . (8)

a=1Ma, ,c= G/ Y T @D 1

For large y, P(n,t) has a scaling and -~ non-scaling piece. In the
tail of the distribution non-scaling piece has a negative sign and
scaling is approached from below as observed experimentally. We can
solve Eq. (8) exactly if we neglect 4-gluon branching and nssume'no
initial gluons. 1n the limit when we consider only gluons (m=m°=o)
and neglect g+ggg, the probability distribution is the 3-gluon

branching distribution6)

n - (n-no)! n, 0, n, n-n_
P o(n) = ﬂffﬁ;:TTT (E—) (1-=) (9)

n

where n, is the initial number of gluons. For large n and n, it

epproaches the KNO scaling function:

o
oP - — e %% z% . (10)
n n,n large

Yz =

All correction terms have negative signs indicating the approach from



below to this scaling form, in agreement with  data.

Finally, we consider the case when there are m initial quarks
and no gluons. Neglecting 4-gluon branching and qa pair production we
can solve Eq. (6) exactly. The solution is the negative binomial

distribution

ph(h) = LBl (kg 4 Kyonk (11)
n
where
Am
k = _Kg and 1 = k(e®t - 1) (12)

Since in the leading logarithm approximation A/A is a constant, the
only possible energy dependence of the parameter k can come from the

energy dependence of the initial number of quarks m,-

The UA5 group used this distribution to fit experimental data
remarkable well from 10 GeV up to 900 GeV with k decreasing from 20 to
3. ) However, this behavior for k does not fi* into our physical
picture. We note that in the large n and n the negative
binomial distribution approaches the same KNO scaling function
[(Eq.(10)] as the 3-gluon branching distribution. However, for fixed
k, the correction terms have positive signs indicating the approach

from above in contradiction with the experimental data.

We conclude that in the parton branching model with coupled
quarks and gluons there is no KNO scaling in the lowest approximation.
At high energies when we neglect quark evolution, the probability
distribution spproaches scaling from below in the high 2z tail in
agreement with data. The negative binomial distribution can be
obtained in the branching model in the case of a quark jet, but it
does not fit the experimental data.

9)

The recent discoveries of the UA1 group”’ that "jet" events have

a much narrower distribution and different mean multiplicity



(n, ,~2n .
Jet non-jet
many models. The shape of the distribution is also very semsitive to

) than "no jet" events are offering a real challenge to

different cuts in the fractional momenta, different rapidity regions,

distinction between the diffractive and nondiffractive events and the

10)

of investigating the initial conditions in the parton branching model.

separation of the leading particles. All this shows the importance
Furthermore, one has to keep in mind that our model is applicable for
non-diffractive events in the region where p_ > p_ min and x not too

near 1 and it does not include soft gluons.
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